ENTONOX®.
Essential safety information.
Summary of Product Characteristics (SPC)

1. Name of the medicinal product

ENTONOX.

2. Qualitative and quantitative composition

ENTONOX cylinders are supplied to the following specification:

- Nitrous oxide: 50.0% +/- 2.0%.
- Oxygen: 50.0% +/- 2.0%.

The medical oxygen specification complies with the current European Pharmacopeia monograph (0417).

The nitrous oxide specification complies with the current European Pharmacopeia monograph (0416).

3. Pharmaceutical form

Medicinal gas, compressed.

4. Clinical particulars

4.1 Therapeutic indications

ENTONOX is used exclusively for the relief of pain without loss of consciousness.

Common examples of the use of ENTONOX are:
- Acute trauma
- Short – term relief for procedures inevitably involving pain, such as wound and burn dressing, would debridement and suturing, post-operative physiotherapy
- Normal labour
- Acute surgical or medical conditions in which the pain is relieved, during exposure only to return on cessation of the analgesia so allowing an unfettered assessment to be made

4.2 Posology and method of administration

ENTONOX is administered through a face mask or mouthpiece. The face mask or mouthpiece is connected to an ENTONOX supply through a demand valve system which allows the ENTONOX to be self-regulated by the patient. The valve is operated by the act of inhalation of the patient and closes down when the patient ceases to inhale.

In nearly all cases, ENTONOX is self-administered, but it may be administered by attendant medical personnel.

Since pain is usually relieved by a concentration of 25% nitrous oxide, continued inhalation does not occur. However, should inhalation continue, light anaesthesia supervenes and the mask drops away as the patient relaxes, or is removed if administration has been by attendant personnel.

There are no contra-indications to the use of ENTONOX in any age group.

4.3 Contraindications

ENTONOX should not be used with any condition where gas is entrapped within a body and where its expansion might be dangerous, such as:
- head injuries with impairment of consciousness
- artificial, traumatic or spontaneous pneumothorax
- air embolism
- decompression sickness
- following a recent dive
- following air encephalography
- severe bullous emphysema
- during myringoplasty
- gross abdominal distension
- intussusception
- mallofacial injuries
- after intraocular gas injection in ophthalmic surgery, for example with SF6 or C2F6, until the intracocular gas has been completely absorbed.

ENTONOX should not be used for more than a total of 24 hours, or more frequently than every 4 days, without close clinical supervision and haematological monitoring (see sections 4.4 and 4.8).

Where ENTONOX is used for more than a total of 6 hours but less than a total of 24 hours within a four day period it should be used with caution.

ENTONOX should not be used for more than a total of 24 hours, or more frequently than every 4 days, without close clinical supervision and haematological monitoring (see sections 4.4 and 4.8).

4.4 Special warnings and precautions for use

Repeated administration or exposure to the nitrous oxide constituent of ENTONOX may lead to addiction. Caution should be exercised in patients with a known history of substance abuse or in healthcare professionals with occupational exposure to nitrous oxide.

The nitrous oxide constituent of ENTONOX causes inactivation of vitamin B12, which is a co-factor of methionine synthase. Folate metabolism is consequently interfered with and DNA synthesis is impaired following prolonged administration of ENTONOX. Prolonged or frequent use of ENTONOX may result in megaloblastic marrow changes, myeloneuropathy and sub acute combined degeneration of the spinal cord.

ENTONOX should not be used for more than a total of 24 hours, or more frequently than every 4 days, without close clinical supervision and haematological monitoring. Specialist advice should be sought from a haematologist in such cases. Haematological assessment should include an assessment for megaloblastic change in red cells and hypersegmentation of neutrophils. Neurological toxicity can occur without anaemia or macrocytosis and with B12 levels in the normal range.

In patients with undiagnosed subclinical deficiency of vitamin B12, neurological toxicity has occurred after single exposures to nitrous oxide during general anaesthesia.

Caution should be issued before using Entonox with patients who have known Chronic Obstructive Pulmonary Disease (COPD) or other conditions where compromised chemoreceptor sensitivity/function may be present. This is due to the relatively high concentration of oxygen contained in Entonox and as such may cause respiratory depression and increases in PaCO2.

Reduced fertility in healthcare personnel has been reported where they have been repeatedly exposed to levels of nitrous oxide above the specified occupational exposure limits in inadequately ventilated rooms. There is no documented evidence to confirm or exclude the existence of any causal connection between these cases and exposure to nitrous oxide.

In patients taking other centrally acting depressant medicinal products, such as morphine derivatives and/or benzodiazepines, concomitant administration of ENTONOX may result in increased sedation, and consequently have effects on respiration, circulation and protective reflexes. If ENTONOX is to be used in such patients, this should take place under the supervision of appropriately trained personnel (see Section 4.5).

Where the patient has been exposed to agents which are toxic to the lungs, such as Paraquat, the use of additional oxygen such as with ENTONOX should be avoided.

Thorough ventilation or scavenging of waste gases should reduce operating theatre and equivalent treatment room levels of ambient nitrous oxide to a level below 100 ppm.
EMTONOX® is non-flammable but strongly supports combustion and should not be used near sources of ignition. Smoking should be prohibited when using EMTONOX.

Under no circumstances should oils or grease be used to lubricate any part of the EMTONOX cylinder or the associated equipment used to deliver the gas to the patient.

Where moisturising preparations are required for use with a facemask or in nasal passages, oil based creams should not be used.

Check that hands are clean and free from any oils or grease.

Where alcohol gels are used to control microbiological cross-contamination ensure that all alcohol has evaporated before handling EMTONOX cylinders or equipment.

It is essential that cylinders are stored according to manufacturer’s instruction, in order to avoid the separation of nitrous oxide from oxygen, which occurs at low temperatures, with consequent hypoxic mixture in the lower part of the cylinder.

4.5 Interactions

The nitrous oxide constituent of EMTONOX inactivates vitamin B12 and potentiates the effects of methotrexate on folate metabolism.

The use of higher levels of oxygen can increase the risk of pulmonary toxicity in patients who have been administered Bleomycin, Amiodarone and Nitrofurantoin or similar antibiotics. In these cases EMTONOX should be administered with caution and at levels kept as low as possible.

There is a risk of additive effects when nitrous oxide (contained in EMTONOX) is used in combination with drugs having a central depressant action (e.g. opiates, benzodiazepines and other psychotropics). If concomitant central acting agents are used the risk for pronounced sedation and depression of protective reflexes should be acknowledged.

When ENTONOX is used as a sole analgesic/sedative agent, driving and use of complex machinery is not recommended until:

- At least 30 minutes has elapsed after the administration of EMTONOX has ceased
- The healthcare professional has judged that the patient has returned to their normal mental status
- The patient feels that they are competent to drive after the relevant procedure is completed
- Additional care is needed when ENTONOX is administered to a patient who has been given concomitant medication.

Addiction may occur.

The frequency of addiction, myeloneuropathy, neuropathy and subacute degeneration of the spinal cord is not known.

Nitrous oxide passes into all gas containing spaces in the body faster than nitrogen passes out. Prolonged exposure may result in bowel distention, middle ear damage and rupture of ear drums.

5. Pharmacological properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic Group – Medical Gas

ATC code – N01AX63

Oxygen

The characteristics of oxygen are:
- Odourless, colourless gas

Oxygen is present in the atmosphere at 21% and is an absolute necessity for life. At the concentrations in EMTONOX, oxygen has no discernible pharmacological effect other than the beneficial effects of an oxygen enriched mixture in certain gases.

Nitrous oxide

The characteristics of nitrous oxide are:
- Sweet smelling colourless gas

Nitrous oxide is not very soluble in water but is fifteen times more soluble than oxygen.

Water dissolves nitrous oxide, taking 100% and blood plasma 45%.

Nitrous oxide is eliminated unchanged from the body mostly by the lungs.

Nitrous oxide is a potent analgesic and a weak anaesthetic. Induction with nitrous oxide is relatively rapid, but a concentration of about 70% is needed to produce unconsciousness. Endorphins are probably involved in the analgesic effect, a concentration of 25% nitrous oxide is usually adequate to provide a marked reduction in pain.
5.2 Pharmacokinetic properties

There are no essential observations about the pharmacokinetics of oxygen at this concentration.

Nitrous oxide is a low potency inhalation anaesthetic and high potency analgesic.

At a constant inspired concentration, the rise time of alveolar concentration is faster than that of any other anaesthetic agent. The elimination of nitrous oxide equally is faster than that of any other anaesthetic. The characteristic is especially valuable in analgesia for short term pain.

The blood/gas partition coefficient of nitrous oxide at 37°C is 0.46 compared with that of nitrogen of 0.015, causing nitrous oxide to expand into the internal gas spaces.

5.3 Preclinical safety data

The current published toxic-pharmacological data indicates that ENTONOX is not harmful to humans.

6. Pharmaceutical particulars

6.1 List of excipients

None.

6.2 Incompatibilities

ENTONOX strongly supports combustion and will cause substances to burn vigorously, including some materials that do not normally burn in air due to the high concentration of oxygen within the mixture. It is highly dangerous in the presence of oils, greases, tarry substances and many plastics due to the risk of spontaneous combustion in the presence of oxygen in relatively high concentrations.

6.3 Shelf life

1 year.

6.4 Special precautions for storage

ENTONOX cylinders should be:
- Stored under cover, preferably inside, kept dry and clean, and not subjected to extremes of heat or cold and away from stocks of combustible material.
- Stored separately from industrial and other non-medical cylinders.
- Stored to maintain separation between full and empty cylinders.
- Used in strict rotation so that cylinders with the earliest filling date are used first.
- Stored separately from other medical cylinders within the store.
- F size cylinders and larger should be stored vertically. D size cylinders and smaller may be stored horizontally.

To ensure that the gas is suitable for immediate use, ENTONOX cylinders should be maintained at a temperature above 10°C for at least 24 hours before use.

Warning notices prohibiting smoking and naked lights must be posted clearly in the cylinder storage area and the Emergency Services should be advised of the location of the cylinder store.

Precautions should be taken to protect cylinders from theft.

Care is needed when handling and using ENTONOX cylinders.

5.2 Pharmacokinetic properties

There are no essential observations about the pharmacokinetics of oxygen at this concentration.

Nitrous oxide is a low potency inhalation anaesthetic and high potency analgesic.

At a constant inspired concentration, the rise time of alveolar concentration is faster than that of any other anaesthetic agent. The elimination of nitrous oxide equally is faster than that of any other anaesthetic. The characteristic is especially valuable in analgesia for short term pain.

The blood/gas partition coefficient of nitrous oxide at 37°C is 0.46 compared with that of nitrogen of 0.015, causing nitrous oxide to expand into the internal gas spaces.

5.3 Preclinical safety data

The current published toxic-pharmacological data indicates that ENTONOX is not harmful to humans.

6. Pharmaceutical particulars

6.1 List of excipients

None.

6.2 Incompatibilities

ENTONOX strongly supports combustion and will cause substances to burn vigorously, including some materials that do not normally burn in air due to the high concentration of oxygen within the mixture. It is highly dangerous in the presence of oils, greases, tarry substances and many plastics due to the risk of spontaneous combustion in the presence of oxygen in relatively high concentrations.

6.3 Shelf life

1 year.

6.4 Special precautions for storage

ENTONOX cylinders should be:
- Stored under cover, preferably inside, kept dry and clean, and not subjected to extremes of heat or cold and away from stocks of combustible material.
- Stored separately from industrial and other non-medical cylinders.
- Stored to maintain separation between full and empty cylinders.
- Used in strict rotation so that cylinders with the earliest filling date are used first.
- Stored separately from other medical cylinders within the store.
- F size cylinders and larger should be stored vertically. D size cylinders and smaller may be stored horizontally.

To ensure that the gas is suitable for immediate use, ENTONOX cylinders should be maintained at a temperature above 10°C for at least 24 hours before use.

Warning notices prohibiting smoking and naked lights must be posted clearly in the cylinder storage area and the Emergency Services should be advised of the location of the cylinder store.

Precautions should be taken to protect cylinders from theft.

Care is needed when handling and using ENTONOX cylinders.

6.5 Nature and contents of container

A summary of ENTONOX cylinders, their size and construction, type of valve fitted and valve outlet pressure is detailed below:

<table>
<thead>
<tr>
<th>Cylinder size</th>
<th>Gas content (litres)</th>
<th>Cylinder water capacity (litres)</th>
<th>Cylinder construction</th>
<th>Valve type</th>
<th>Filling port</th>
<th>Outlet connections</th>
<th>Valve outlet pressure bar(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>500</td>
<td>2.32</td>
<td>Steel</td>
<td>Integral</td>
<td>Non regulated</td>
<td>Pin index (ISO 407)</td>
<td>137</td>
</tr>
<tr>
<td>F</td>
<td>2000</td>
<td>9.44</td>
<td>Steel</td>
<td>Integral</td>
<td>Non regulated</td>
<td>Pin index (ISO 407)</td>
<td>137</td>
</tr>
<tr>
<td>EX</td>
<td>3500</td>
<td>10.0</td>
<td>Steel</td>
<td>Integral</td>
<td>Non regulated</td>
<td>Pin index (ISO 407)</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>5000</td>
<td>23.6</td>
<td>Steel</td>
<td>Integral</td>
<td>Non regulated</td>
<td>Pin index (ISO 407)</td>
<td>137</td>
</tr>
<tr>
<td>EW</td>
<td>18275</td>
<td>46.6</td>
<td>Steel</td>
<td>Integral</td>
<td>Non regulated</td>
<td>Pin index (ISO 407)</td>
<td>217</td>
</tr>
</tbody>
</table>

Cylinders: All cylinders used for the supply of ENTONOX are manufactured from either high tensile steel or aluminium. The D, F and G size cylinders are designed with working pressure of at least 137 bar (g). The ED, EX and EW size cylinders are designed with a maximum working pressure of 230 bar (g).

The colour coding of the shoulders of ENTONOX cylinders is quartered blue (RAL 5010) and white (RAL 9010). The colour coding of the cylinder body is white (RAL 9010). Cylinders also carry the ENTONOX name on the body of the cylinder.

For a limited period, cylinders may have blue bodies. These cylinders do not have the name ENTONOX on the body of the cylinder.

The programme to convert all ENTONOX cylinders to white bodies will be completed by 2025.

Cylinder valves: ENTONOX cylinders are supplied with two main types of cylinder valves, dependant upon the cylinder filling pressure and the type of application.

Pin index cylinder valves are fitted to D, F and G cylinders, which are designed to be used with a pressure regulator.

These cylinders’ valves have outlet connections that conform to ISO 407 (pin index) and are filled to 137 bar (g). Pin index cylinder valves are constructed from high tensile brass with a steel spindle fitted with a Nylon 6.6 insert.

ED and EX cylinders are fitted with valves that have an integral pressure regulator, with an outlet pressure of 4 bar (g). These regulated valves are fitted with an ISO 5145 product specific filling connection and a product specific BS 5682 Schrader outlet. Integral cylinder valves are constructed from high tensile brass with a brass spindle fitted with a Nylon 6.6 insert.

The side outlet hand wheel valve fitted to EW cylinders has an ISO 5145 product specific valve outlet. The valve design incorporates a residual pressure device to prevent the cylinder from being fully emptied and prevent the cylinder from being contaminated should the valve be left open. The valve is constructed from brass and is fitted with a brass spindle with a Nylon 6.6 insert. The residual pressure device is fitted with a stop with O ring seals.

The internal valve components in the integral regulator are made from Oxygen compatible materials, designed to not produce poisonous fumes if the cylinder is subjected to high temperatures, causing ignition of any of the valve components and compliant with the requirements of ISO 15001.
6.6 Instructions for use/handling

General
All personnel handling ENTONOX cylinders should have adequate knowledge of:
- properties of the gas
- correct operating procedures for the cylinder
- precautions and actions to be taken in the event of an emergency

Preparation for use
Ensure ENTONOX cylinders are maintained at a temperature above 10°C for at least 24 hours before use to ensure the gases are mixed correctly.

If this is not possible, D and ED size cylinders may be used immediately if inverted three times before use to ensure mixing.

Cylinders used with a pressure regulator
Sizes D, F, G and EW

To prepare the cylinder for use:
- Remove the tamper evident seal and the valve outlet protection. Ensure the cap is retained so that it can be refitted after use
- Do not remove and discard any batch labels fitted to the cylinder
- Ensure that an appropriate ENTONOX regulator or manifold tailpipe is selected for connection to the cylinder
- Ensure the connecting face on the regulator or tailpipe is clean and the sealing washer fitted is in good condition
- Connect the regulator or tailpipe, using moderate force only and where appropriate connect the tubing to the regulator/flowmeter outlet
- Open the cylinder valve slowly and check for any leaks

Cylinders with an integral regulated valve
Sizes ED and EX

To prepare the cylinder for use:
- Check the cylinder contents gauge on the cylinder valve to ensure that there is sufficient gas contents in the cylinder
- Remove the tamper evident seal and cover fitted over the valve outlets
- Ensure that the correct equipment is selected for connection to the cylinder. The tubing should be designed for use with ENTONOX and the Schrader probe should be specific to ENTONOX use
- Connect the ENTONOX Schrader probe to the Schrader outlet
- Open the cylinder valve slowly and check for any leaks

Leaks
Cylinders used with a pressure regulator
Sizes D, F, G and EW

Having connected the regulator or manifold yoke/connector to the cylinder, check the connections for leaks using the following procedure:
- Should leaks occur this will usually be evident by a hissing noise
- Should a leak occur between the valve outlet and the regulator or manifold yoke/connector, depressurise and remove the fitting and fit an approved sealing washer. Reconnect the fitting to the valve with moderate force only, fitting a replacement regulator or manifold tailpipe as required
- Sealing or jointing compounds must never be used to cure a leak
- Never use excessive force when connecting equipment to cylinders
- If leak persists, label cylinder and return to BOC

7. Marketing authorisation holder
BOC Gases Ireland Limited
J F Kennedy Drive
Bluebell
Dublin 12

8. Marketing authorisation number(s)
PA 208/5/1

9. Date of first authorisation/renewal of the authorisation
Date of first authorisation 01/04/1980.
Date of last renewal 01/04/2010.

10. Date of revision of the text
August 2018.

11. Dosimetry (if applicable)
Not applicable.

12. Instructions for preparation of radiopharmaceuticals (if applicable)
Not applicable.

Supply Classification Status

Product subject to prescription which may not be renewed (A) Supply through Pharmacies only.
All types of fire extinguishers may be used when dealing with a fire involving ENTONOX cylinders.

No special protective equipment for fire fighters is required. Nitric oxide and nitrogen dioxide may be produced as the products of combustion if ENTONOX is involved in a fire.

4. Accidental release measures

If a large volume of ENTONOX is released, if safe to do so, you should:
- close the cylinder valve
- where possible, isolate all sources of ignition
- if release continues, evacuate the area and ensure that the affected area is adequately ventilated before re-entry

Self-contained breathing apparatus is not required to be used if ENTONOX is released in a confined area.

When using ENTONOX cylinders ensure adequate ventilation.

Caution:
Long term exposure to ENTONOX, if inhaled for periods longer than those indicated for clinical use, may cause the user to develop myeloneuropathy degeneration (due to the nitrous oxide component of the gas).

The UK exposure limit for nitrous oxide (as defined in EH40/2005) specifies the Long Term Exposure Level (TWA over 8 hours) should not exceed 100ppm.

A Short Term Exposure Level is not specified.

It is recommended that ENTONOX cylinders should not be vented after use – they should be returned to BOC, with any residual gas, where they will be vented before refilling in a safe environment.

If, for safety reasons, a cylinder is required to be vented after use, the gas should be vented to atmosphere in a well ventilated area.

Contact BOC if further guidance on venting cylinders is required.

When ENTONOX cylinders are required to be transported, ensure that the cylinders are:
- located in a compartment separated from the driver
- adequately restrained
- not leaking and have their valves closed

The vehicle must be adequately ventilated. Ensure the driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency.

It is advisable to provide the driver with written instructions that detail the actions to be taken in the event of an accident or emergency. Cylinders should be removed from the vehicle as soon as possible.

8. Transport information

<table>
<thead>
<tr>
<th>UN number</th>
<th>UN3156 compressed gas oxidising, N.O.S. (oxygen, nitrous oxide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Class 2</td>
</tr>
<tr>
<td>Labels</td>
<td>2, 5, 1</td>
</tr>
<tr>
<td>Hazard identification number</td>
<td>25</td>
</tr>
<tr>
<td>Emergency Action Code</td>
<td>25</td>
</tr>
<tr>
<td>Tunnel Restriction Code</td>
<td>2</td>
</tr>
<tr>
<td>Transport category</td>
<td>2</td>
</tr>
</tbody>
</table>

ENTONOX is supplied as a compressed gas in a high pressure cylinder.

Cylinders may explode if subjected to extremely high temperatures (if involved in a fire).

ENTONOX is a non-flammable gas but is a very strong oxidant. It will strongly support and intensify combustion.

It may react violently with combustible materials such as oils and grease.

3. Fire fighting measures

If ENTONOX cylinders are involved in a fire:
- If it is safe to move the cylinders,
 - close cylinder valve to stop the flow of product
 - move cylinders away from source of heat
 - if it is not safe to move the cylinders,
 - cool with water from a protected position

2. Hazards

Classification labelling and packaging regulations

Danger.
May cause or intensify fire; oxidiser (H270).
Contains gas under pressure; may explode if heated (H280).
Keep/Store away from clothing, hydrosolvents and combustible materials (P220).
Keep redox valves free from grease and oil (P244).
In case of fire: stop leak if safe to do so (P370 + P376).
Protect from sunlight: store in a well-ventilated place (P410 + P403).

Dangerous Preparations Directive
Contact with combustible material may cause fire (R8).
Keep out of the reach of children (S2).
Keep away from combustible material (S17).

Label statements
- Contact with combustible material may cause fire
- No smoking or naked flames near ENTONOX cylinders
- Use no oil or grease
- Keep-away from extremes of heat and combustible material
- Store cylinders under cover in a clean, dry and well ventilated area

ENTONOX is supplied as a compressed gas in a high pressure cylinder.

Cylinders may explode if subjected to extremely high temperatures (if involved in a fire).

ENTONOX is a non-flammable gas but is a very strong oxidant. It will strongly support and intensify combustion.

It may react violently with combustible materials such as oils and grease.

1. Contact information

BOC telephone number to be used in the event of an emergency:
ROI 1890 355 255.